Monatshefte für Chemie 101, 437-448 (1970)

Konstanten der potentiellen Energie, mittlere Schwingungsamplituden, Bastiansen—Morino-Schrumpfeffekt und thermodynamische Funktionen einiger isotoper Arten des Chlorcyans*

Von

James R. Durig und G. Nagarajan**

Aus dem Department of Chemistry, University of South Carolina, Columbia (S. C.), USA

(Eingegangen am 14. März 1969)

Mit Hilfe der gruppentheoretischen Methode werden aus den Grundschwingungsfrequenzen isotoper Arten des Chlorcyans, das eine lineare asymmetrische Struktur der Symmetriepunktgruppe $C_{\infty v}$ besitzt, vier Bindungskraftkonstanten ermittelt. Aus den Symmetriekoordinaten werden von den gebundenen und nichtgebundenen Atompaaren die mittleren Amplitudenquadrate die verallgemeinerten mittleren Amplitudenquadrate (mittlere Parallelamplitudenquadrate, mittlere Senkrechtamplitudenquadrate und mittlere gemischte Produkte) und die mittleren Schwingungsamplituden für die Temperaturen 298° K, 500° K und 1000° K berechnet. Außer diesen Molekülkonstanten werden für alle vier isotopen Arten des Moleküls die molaren thermodynamischen Funktionen für den Temperaturbereich von 200° K bis 2000° K berechnet. Dieser Rechnung wird das Modell eines harmonischen Oszillators und starren Rotators zugrunde gelegt. Die Natur der beiden charakteristischen Bindungen wird an Hand der erhaltenen Ergebnisse kurz besprochen.

Potential Energy Constants, Mean Amplitudes of Vibration, Bastiansen—Morino Shrinkage Effect and Thermodynamic Functions in Some Isotopic Species of Cyanogen Chloride

On the basis of the group theoretical method four valence force constants have been evaluated by employing the fundamental frequencies of isotopic species of the cyanogen chloride molecule possessing a linear asymmetrical structure with the symmetry point group $C_{\infty v}$. Mean-square amplitude quantities, generalized mean-square amplitude quantities (mean-square

* Diese Arbeit wurde vom U.S. Army Research Office-Durham unter dem Zeichen Grant DA-ARO-D-31-124-G 864 unterstützt.

** Ständige Adresse: Kalyanapuram, Thanjavur District, Madras state, India. NSF Summer Research Participant. parallel amplitudes, mean-square perpendicular amplitudes and mean cross products), and mean amplitudes of vibration for the bonded and nonbonded atom pairs have been computed at the temperatures 298° K, 500° K, and 1000° K by employing the symmetry coordinates. In addition to these molecular constants, the molar thermodynamic functions for all the four isotopic species of the molecule have also been calculated for the temperature range $200-2000^{\circ}$ K on the assumption of a rigid rotator, harmonic oscillator model. A brief discussion of the results is given with respect to the nature of the two characteristic bonds.

Badger und Woo¹ untersuchten als erste die UV-Spektren der Halogencyanide; etwas später West und Farnworth² die Ramanspektren. Penny und Sutherland³ bestimmten die Grundschwingungsfrequenzen für alle Halogenevanide und berechneten die Kraftkonstanten. Später untersuchte Wagner⁴ das Ramanspektrum des Chlorcyans und bestimmte einen Teil der Grundschwingungen. Richardson und Wilson⁵ untersuchten die Infrarotabsorptionsspektren der isotopen Arten von gasförmigem Chlorcyan und bestimmten die parallelen Schwingungen. Nixon und Cross⁶ untersuchten das Infrarotabsorptionsspektrum von gasförmigem Chlorcyan, bestimmten die beiden parallelen Schwingungen und schätzten aus den Kombinationsbanden die senkrechte Schwingung ab. Später veröffentlichten Freitag und Nixon⁷ die Infrarotabsorptionsspektren von gasförmigen und kristallinen Halogencvanen. Beach und Turkevich⁸ machten Elektronenbeugungsuntersuchungen an Chlorcyan. Town und Mitarb.⁹⁻¹¹, Smith und Mitarb.¹², Burrus und Gordy¹³, Yarmus¹⁴ sowie Tyler und Sheridan¹⁵ untersuchten das Mikrowellenspektrum des Chlorcyans. Kürz-

⁵ W. S. Richardson und E. B. Wilson Jr., J. Chem. Physics 18, 1556 (1950).

⁶ E. R. Nixon und P. C. Cross, J. Chem. Physics 18, 1316 (1950).

⁷ W. O. Freitag und E. R. Nixon, J. Chem. Physics 24, 109 (1956).

⁸ J. Y. Beach und A. Turkevich, J. Amer. Chem. Soc. 61, 299 (1939).

⁹ C. H. Townes, A. N. Holden, J. Bardeen und F. R. Merritt, Physic. Rev. 71, 664 (1947).

¹⁰ C. H. Townes, A. N. Holden und F. R. Merritt, Physic. Rev. 72, 513 (1947); 74, 1113 (1948).

¹¹ J. Bardeen und C. H. Townes, Physic. Rev. 73, 97 (1947).

¹² A. G. Smith, H. Ring, W. V. Smith und W. Gordy, Physic. Rev. 74, 370 (1948).

¹³ C. A. Burrus und W. Gordy, Physic. Rev. 101, 599 (1956).

¹⁴ L. Yarmus, Physic. Rev. 105, 928 (1957).

¹⁵ J. K. Tyler und J. Sheridan, Trans. Faraday Soc. 59, 266 (1963).

¹ R. M. Badger und S. Woo, J. Amer. Chem. Soc. 53, 2572 (1931).

² W. West und M. Farnsworth, J. Chem. Physics 1, 402 (1933).

³ W. C. Penny und G. B. B. M. Sutherland, Proc. Roy. Soc. [London] **156**, 654 (1936).

⁴ J. Wagner, Z. Physik. Chem. 48 B, 399 (1941); 193 A, 55 (1943).

lich untersuchten Lafferty, Lide und Toth¹⁶ die Infrarot- und die Mikrowellenspektren des Chlorcyans, bestimmten die Grundschwingungsfrequenzen und berechneten sowohl die Gleichgewichtsabstände als auch die durchschnittlichen Bindungslängen.

Wir wollen in der vorliegenden Arbeit aus diesen neuen Schwingungsund Strukturwerten folgende Größen bestimmen: a) die Konstanten der potentiellen Energie nach der gruppentheoretischen Methode von Wilson¹⁷ mit einem Vier-Bindungs-Kraftkonstantenfeld, b) die mittlere Schwingungsamplitude für die Temperaturen 298°K, 500°K und 1000°K mittels der Symmetriekoordinaten nach der Methode von Cyvin¹⁸, c) den Bastiansen-Morino-Schrumpfeffekt aus den verallgemeinerten mittleren Amplitudenquadraten und d) die molaren thermodynamischen Funktionen für den Temperaturbereich 200-2000° K, wobei das Modell eines starren Rotators und harmonischen Oszillators angenommen wird. Die Ergebnisse unserer Untersuchungen sollten nützlich sein für a) die Berechnung der Normalschwingungen in anderen molekularen Systemen mit gleichen chemischen Bindungen, b) die Deutung der Ergebnisse von Elektronenbeugungsversuchen von gebundenen und nichtgebundenen Atompaaren und c) die Deutung experimentell erhaltener Werte von Entropien und Molwärmen im idealen Gaszustand bei Atmosphärendruck.

Konstanten der potentiellen Energie

Gemäß den geltenden Symmetrieüberlegungen und Auswahlregeln¹⁹ hat ein asymmetrisches lineares Molekül ijk, wie Chloreyan, das der Symmetriepunktgruppe $C_{\infty v}$ angehört, vier Schwingungsfreiheitsgrade, die aber nur drei Grundschwingungsfrequenzen verursachen, nämlich v_1 , die der C—Cl-Streckschwingung entspricht und der Symmetrieart Σ^+ angehört, v_2 , die der Cl— $\widehat{C} \equiv$ N-Knickschwingung entspricht und der Symmetrieart Σ^+ angehört und v_3 , die der CN-Streckschwingung entspricht, Symmetrieart II. Die Frequenzen v_1 und v_2 gehören zu nichtentarteten und parallelen Schwingungen, die Frequenz v_3 zu einer entarteten senkrechten Schwingung. Alle Schwingungen sind sowohl im Infrarot als auch im Ramanspektrum erlaubt. Die Bezifferung der Schwingungen, wie sie in unserer Arbeit erfolgt, stimmt mit der bei *Herzberg*¹⁹ überein; einige andere Autoren haben eine vertauschte Bezifferung für die parallelen Schwingungen.

¹⁶ W. J. Lafferty, D. R. Lide und R. A. Toth, J. Chem. Physics 43, 2063 (1965).

¹⁷ E. B. Wilson Jr., J. Chem. Physics 7, 1047 (1939); 9, 76 (1941).

¹⁸ S. J. Cyvin, Spectrochim. Acta 15, 828 (1959).

¹⁹ G. Herzberg, "Infrared and Raman Spectra of Polyatomic Molecules", D. Van Nostrand Company, New York (1962).

In Tab. 1 stehen die Grundfrequenzen in cm^{-1} und die Gleichgewichtskernabstände in Å für alle 4 isotopen Arten des Chlorcyans, wie sie von

Molekül	$v_1 \ (\Sigma^+)$	$v_2(\pi)$	$v_3 (\Sigma^+)$	Cl—C	$C\equiv N$
³⁵ Cl ¹² C ¹⁴ N	744,2	378,4	2215,6	1,6275	1,166
$ m ^{37}Cl^{12}C^{14}N$	736	378	2215,3	1,6341	1,1571
${}^{35}\mathrm{Cl}^{12}\mathrm{C}^{15}\mathrm{N}$	734	375,7	2188,1	1,627	1,1663
${}^{37}{\rm Cl^{12}C^{15}N}$	725,7	375,3	2187,8	1,634	1,1574

Tabelle 1. Grundschwingungsfrequenzen in cm⁻¹ und Kernabstän de in Å einiger isotoper Arten des Chlorcyans

Lafferty, Lide und Toth¹⁶ angegeben wurden. Nach dem von Wilson¹⁷ postulierten Prinzip wurden die Säkulargleichungen, die die Normalschwingungen in Termen der Bindungskraftkonstanten geben, konstruiert und haben folgende Gestalt:

Für die Schwingungen vom Typ Σ^+ :

$$egin{array}{l} f_d \left(\mu_i + \mu_j
ight) + f_D \left(\mu_j + \mu_k
ight) - 2 f_{Dd} \, \mu_j = \lambda_1 + \lambda_3 \ (f_d f_D - f_{Dd}^2) \left(\mu_i \, \mu_j + \mu_j \, \mu_k + \mu_i \, \mu_k
ight) = \lambda_1 \, \lambda_3 \end{array}$$

Für die Schwingung vom Typ π :

$$f_{\Theta} \left(1/Dd \right) \left[D^2 \, \mu_i + (D+d)^2 \, \mu_j + d^2 \, \mu_k
ight] = \lambda_2 \, .$$

Dabei bedeuten μ_i , μ_j und μ_k die reziproken Massen der Atome *i*, *j* und *k*, f_a ist die Kraftkonstante der *i*—*j*-Streckung, f_D die Kraftkonstante der *j*—*k*-Streckung, f_{Dd} die Kraftkonstante der Wechselwirkung der *i*—*j*- und der *j*—*k*-Streckungen und f_0 die Kraftkonstante der Molekülknickung.

Das Molekül ijk entspricht genau dem Chloreyan ClCN. In den obenstehenden Gleichungen ist λ mit der Normalfrequenz ν durch $\lambda = 4 \pi^2 c^2 \nu^2$ verknüpft, wobei c die Lichtgeschwindigkeit im Vak. und ν die Grundfrequenz in cm⁻¹ bedeutet. Die Säkulargleichungen wurden mit Hilfe der Matrizen der potentiellen und der kinetischen Energie, der Grundschwingungsfrequenzen in cm⁻¹ und der Gleichgewichtskernabstände in Å aus Tab. 1 aufgestellt und dann gelöst. Die berechneten Werte für die Bindungskraftkonstanten in 10⁵ dyn/cm sind: $f_d = 4,8128, f_D = 18,6232,$ $f_{Dd} = 1,3486$ und $f_{\theta} = 0,1805$. Die Kraftkonstante der Wechselwirkung ist also ziemlich groß, die der Knickung klein. Das zeigt, daß die beiden Streckschwingungen stark gekoppelt sind. Da wir die Kraftkonstanten aus den Grundschwingungsfrequenzen isotoper Arten erhalten haben, sind die Werte sehr verläßlich und sollten für die Berechnung der Normalfrequenzen anderer Moleküle mit gleichen chemischen Bindungsverhältnissen und fast identischen Bindungsabständen gute Dienste leisten.

Mittlere Schwingungsamplituden

Die von $Cyvin^{18}$ angeführte Grundgleichung $|\sum G^{-1} - E\Delta| = 0$ wurde hier angewendet, um die Säkulargleichung aufzustellen, wobei D mit der Normalfrequenz durch $\Delta = (\hbar/8 \pi^2 \nu^2) \coth(\hbar \nu/2 k T)$ verknüpft ist. Dabei bedeutet \hbar das Plancksche Wirkungsquantum, k die *Boltzmann*konstante und T die absol. Temperatur. Auf Grund dieser Gleichung kann man folgende Säkulargleichungen erhalten, die die Normalfrequenzen für ein ijk-Molekül in Termen der mittleren Amplitudenquadrate geben:

Für die Schwingungen vom Typ Σ^+ :

$$\begin{split} \Delta_1 + \Delta_3 &= \left[(\mu_j + \mu_k) \, \sigma_d + (\mu_i + \mu_j) \, \sigma_D + 2 \, \mu_j \, \sigma_{Dd} \right] (\mu_i \, \mu_j + \mu_j \, \mu_k + \mu_i \, \mu_k)^{-1} \\ \Delta_1 \, \Delta_3 &= (\sigma_d \, \sigma_D - \sigma_{Dd}^2) \, (\mu_i \, \mu_j + \mu_j \, \mu_k + \mu_i \, \mu_k)^{-1} \end{split}$$

Für die Schwingung vom Typ π :

$$\Delta_2 = \sigma_\Theta \; Dd \; [D^2 \, \mu_i + (D+d)^2 \, \mu_j + d^2 \, \mu_k]^{-1}$$

Dabei bedeuten d und D die i—j- und j—k-Kernabstände in der Gleichgewichtskonfiguration, μ_i , μ_j und μ_k die reziproken Massen der Atome i, jund $k; \sigma_d$ ist das mittlere Amplitudenquadrat, das durch das gebundene Atompaar i--j verursacht wird, σ_D das mittlere Amplitudenquadrat, das durch das gebundene Atompaar j—k verursacht wird, σ_{Dd} das mittlere Amplitudenquadrat, das durch die Wechselwirkung der beiden gebundenen Atompaare verursacht wird und σ_{θ} das mittlere Amplitudenquadrat, das durch die Knickung des Moleküls verursacht wird.

Außer diesen vier Größen kann man das durch das nichtgebundene Atompaar i-k mit p = D + d verursachte mittlere Amplitudenquadrat σ_p als $\sigma_p = \sigma_d + \sigma_D + 2 \sigma_{Dd}$ erhalten. Da sie keine besondere Bedeutung haben und ihr Zahlenwert gering ist, werden in dieser Arbeit die Wechselwirkungsgrößen zwischen gebundenen und nichtgebundenen Atompaaren vernachlässigt.

Die Säkulargleichungen, die die Normalfrequenzen in Termen der mittleren Amplitudenquadrate angeben, wurden für die Temperaturen 298° K, 500° K und 1000° K mit Hilfe der Schwingungs- und Strukturwerte der Tab. 1 aufgestellt und dann gelöst. Die erhaltenen Durchschnittswerte der mittleren Amplitudenquadrate für die genannten Temperaturen sind für Chloreyan in Å² in Tab. 2 angegeben. Das mittlere Amplitudenquadrat der Molekülknickung ist viel größer als die der gebundenen und nichtgebundenen Atompaare. Im Falle der Bindungskraftkonstanten ist die Situation gerade umgekehrt. Das mittlere Amplitudenquadrat des nichtgebundenen Atompaares ist viel größer als die der gebundenen Atompaare. Die Größe für die Wechselwirkung der gebundenen Atompaare ist beträchtlich kleiner als alle anderen Größen (vgl. Tab. 2). Die entsprechenden berechneten mittleren Schwingungs-

Symbol	${ m T}=298^\circ~{ m K}$	Mittleres Amplituden quadrat T = 500° K	$T = 1000^{\circ}K$
σd	0,0011354	0,0012096	0,0014914
σĎ	0,0021049	0,0022504	0,0027708
$\sigma_{\rm Dd}$	0,0004597		0,0002626
σ_{θ}	0,0287525	0,0420575	0,0786517
$\sigma_{\rm p}$	0,0023209	0,0027376	0,0047874

|--|

amplituden in Å der gebundenen sowie der nichtgebundenen Atompaare sind in Tab. 3 angegeben. Dabei sind die Werte für Fluorcyan, Bromcyan und Jodcyan bei 298° K aus der Literatur²⁰ entnommen, um einen Vergleich zu ermöglichen. Die mittleren Schwingungsamplituden haben für die gebundenen und die nichtgebundenen Atompaare die Reihenfolge: FCN > ClCN > BrCN > JCN. Das zeigt, daß der Ersatz eines Atoms von höherem Atomgewicht durch ein solches mit niederem Atomgewicht in dem Molekül kleinere Grundfrequenzen und größere mittlere Schwingungsamplituden verursacht. Der Wert der mittleren Schwingungsamplitude wächst mit steigender Temperatur. Obwohl Beach und Turkevich Elektronenbeugungsuntersuchungen an diesem Molekül durchführten, sind keine Werte für die mittlere Schwingungsamplitude der gebundenen oder der nichtgebundenen Atompaare bekannt, so daß ein Vergleich mit den von uns gefundenen Werten nicht möglich ist. Unsere Ergebnisse dürften aber auf jeden Fall bei der Deutung künftiger Elektronenbeugungsversuche nützlich sein.

Molekül	Abstand	$\begin{array}{l} \mbox{Mittlere Schwingungsamplitude} \\ T = 298^\circ K \ T = 500^\circ K \ T = 1000^\circ I \end{array}$
FCN	$\begin{array}{c} C \longrightarrow F \\ C \equiv N \\ F \cdots N \end{array}$	$\begin{array}{c} 0,0317\\ 0,0460\\ 0,0430 \end{array}$
CICN	$\begin{array}{c} C \longrightarrow Cl \\ C \equiv N \\ Cl \cdots N \end{array}$	$\begin{array}{ccccccc} 0,0337 & 0,0348 & 0,0386 \\ 0,0459 & 0,0474 & 0,0526 \\ 0,0482 & 0,0523 & 0,0692 \end{array}$
BrCN	$C \longrightarrow Br$ $C \equiv N$ $Br \cdots N$	0,0347 0,0461 0,0530
ICN	$\begin{array}{c} C \longrightarrow I \\ C \equiv N \\ I \cdots N \end{array}$	0,0371 0,0466 0,0567

Tabelle 3. Halogencyane: Mittlere Schwingungsamplituden in Å

²⁰ G. Nagarajan, J. Chim. Physique 61, 338 (1964).

H. 2/1970] Funktionen einiger isotoper Arten des Chlorcyans

Bastiansen-Morino-Schrumpfeffekt

Karle und Karle²¹ fanden durch Elektronenbeugung, daß der Abstand der Sauerstoffatome im Kohlendioxid nicht genau das Zweifache des Abstandes zwischen Sauerstoff und Kohlenstoff war, sondern etwas weniger. Bastiansen und Mitarbeiter²²⁻²⁶ bestätigten diese Verkürzung längerer Abstände bei mehreren linearen Atomketten und schrieben diese Schrumpfung nichtlinearen Schwingungen zu. Morino²⁷ entwickelte dann eine Theorie zu diesem Effekt, wobei er ihn durch die intramolekulare Bewegung mit Hilfe der verallgemeinerten mittleren Amplitudenquadrate beschrieb²⁸. Die Theorie besteht aus einer Potenzreihenentwicklung für die Schrumpfung sowohl linearer als auch nichtlinearer Konformationen. Sie wurde von Morino und Mitarbeitern²⁹⁻³¹ und Cyvin³² entwickelt. Im Falle der linearen Konformation wird die Schrumpfung hauptsächlich durch die senkrechte Verschiebung der Kerne verursacht; die anharmonischen Terme fallen weg, wenn man nur rein harmonische Schwingungen betrachtet. Im Falle nichtlinearer Konformation definiert man zwei Arten von Schrumpfung, und zwar die natürliche und die praktische Schrumpfung. Es wurde gezeigt³⁰⁻³², daß die beiden Schrumpfungen in erster Näherung gleich sind. Im Gegensatz zu den Verhältnissen bei der linearen Konformation fallen die anharmonischen Terme bei nichtlinearen Konformationen nicht notwendigerweise weg, außer bei hochsymmetrischen Molekülen, die im Elektronengrundzustand keine völlig symmetrischen Knickschwingungsrassen besitzen. Später wurde für die beschriebenen Erscheinungen von vielen Autoren in ihren spektroskopischen Berechnungen für verschiedene lineare und nichtlineare Moleküle Name "Bastiansen-Morino-Schrumpfeffekt" der eingeführt. Genauere Informationen über diese Frage bei linearen und nicht-

³¹ Y. Morino, S. J. Cyvin, K. Kuchitsu und T. Ijima, J. Chem. Physics 36, 1109 (1962).

²¹ I. Karle und J. Karle, J. Chem. Physics 17, 1052 (1949).

 $^{^{22}}$ A. Almenningen, O. Bastiansen und T. Munthe-Kass, Acta Chem. Scand. 10, 261 (1956).

²³ A. Almenningen, O. Bastiansen und M. Traetteberg, Acta Chem. Scand. 13, 1699 (1959).

²⁴ O. Bastiansen und M. Traetteberg, Acta Cryst. 13, 1108 (1960).

 $^{^{25}}$ M. Traetteberg, Dissertation, Norges Tekniske Hogskole, Trondheim, Norwegen (1960).

²⁶ H. Breed, O. Bastiansen und A. Almenningen, Acta Cryst. 13, 1108 (1960).

²⁷ Y. Morino, Acta Cryst. 13, 1107 (1960).

²⁸ Y. Morino und E. Hirota, J. Chem. Physics 23, 737 (1955).

²⁹ Y. Morino, J. Nakamura und P. W. Moore, J. Chem. Physics **36**, 1050 (1962).

³⁰ Y. Morino, K. Kuchitsu und T. Oka, J. Chem. Physics 36, 1108 (1962).

linearen polyatomaren Molekülen kann man den Zusammenfassungen von Cyvin³² und Nagarajan und Lippincott³³ entnehmen.

Der aus Elektronenbeugungsversuchen erhaltene Abstand zwischen den Kernen r^g ist nicht der Gleichgewichtsabstand r^e , sondern ein durch die thermische Bewegung beeinflußter Abstand, der sich für das Atompaar i-j wie folgt analytisch darstellen läßt:

$$r_{ij}{}^g = \langle r_{ij}
angle = r_{ij}{}^e + \langle \Delta z_{ij}
angle + (1/2 r_{ij}{}^e) \left(\langle \Delta x_{ij}{}^2 + \Delta y_{ij}{}^2
angle
ight);$$

dabei ist die z-Achse in der Richtung der Gleichgewichtslage der betrachteten Kerne angenommen. Der sogenannte lineare anharmonische Term $\langle \Delta z_{ij} \rangle$, der von den Konstanten dritter und höherer Ordnung der potentiellen Energie abhängt, fällt weg, wenn nur die harmonischen Schwingungen betrachtet werden. Die quadratischen Terme $\langle \Delta x_{ij}^2 \rangle$ und $\langle \Delta y_{ij}^2 \rangle$ sind die mittleren Senkrechtamplitudenquadrate der Schwingung. Für ein Molekül ijk gibt es nur eine einzige lineare Schrumpfung, die durch die Differenz des Abstandes $r_{j} \cdots k^{g}$ und der Summe der einzelnen Bindungslängen r_{ij}^{g} und r_{jk}^{g} gegeben ist. Der analytische Ausdruck für diese lineare Schrumpfung in Termen der mittleren Senkrechtamplitudenquadrate der Schwingung und der Gleichgewichtskernabstände lautet:

$$- \delta_i - \cdot \cdot k = \langle \Delta x_i^2 - \cdot \cdot k \rangle / r_i - \cdot k^e - \langle \Delta x_i^2 \rangle / r_{ij}^e - \langle \Delta x_j^2 \rangle / r_{jk}^e$$

Da im Ausdruck für die lineare Schrumpfung der lineare Term völlig verschwindet, beginnt die Schrumpfung hauptsächlich mit den Termen zweiter Ordnung. Für ein lineares, asymmetrisches dreiatomiges Molekül *ijk* sind die mittleren Senkrechtamplitudenquadrate $\langle \Delta x^2 \rangle$ und $\langle \Delta y^2 \rangle$ für gebundene und nichtgebundene Atompaare identisch. Im Falle des Chlorcyans lautet der Ausdruck für die Schrumpfung

$$- \delta_{\mathrm{Cl}} - \sum_{\mathrm{N}} = \langle \Delta x_{\mathrm{Cl}}^2 - \sum_{\mathrm{N}} \rangle / (D + d) - \langle \Delta x_{\mathrm{Cl}}^2 - C \rangle / d - \langle \Delta x_{\mathrm{Cl}}^2 = N \rangle / D.$$

Wir haben in der von $Cyvin^{34}$ beschriebenen Art aus den in Tab. 2 zusammengestellten berechneten Werten der mittleren Amplitudenquadrate für das Chlorcyan bei den drei untersuchten Temperaturen die verallgemeinerten mittleren Amplitudenquadrate, nämlich die mittleren Parallelamplitudenquadrate $\langle \Delta z^2 \rangle$, die mittleren Senkrechtamplitudenquadrate $\langle \Delta x^2 \rangle$ und $\langle \Delta y^2 \rangle$ und die mittleren gemischten Produkte $\langle \Delta x \Delta y \rangle$, $\langle \Delta y \Delta z \rangle$ und $\langle \Delta z \Delta x \rangle$ berechnet. Die Werte sind in Tab. 4 in Å² angegeben. Die mittleren gemischten Produkte verschwinden bei symmetrischen Molekularsystemen. Die mittleren Senkrechtamplituden-

³² S. J. Cyvin, Tiddskr. Kjemi, Bergvesen, Mettallurgi **21**, 236 (1961); **22**, 44, 73 (1962).

 ³³ G. Nagarajan und E. R. Lippincott, J. Chem. Physics 42, 1809 (1965).
 ³⁴ S. J. Cyvin, Spectrochim. Acta 17, 1219 (1961).

quadrate der Schwingung in Å² aus Tab. 4 und die Kernabstände in Å aus Tab. 1 wurden von uns zur Berechnung der linearen Schrumpfung des Chlorcyans verwendet. Die Ergebnisse lauten: 0,00993 Å bei 298° K,

Atompaar	Symbol	Verallgemeinert ${ m T}=298^{\circ}{ m K}$	es mittleres Ampli $T = 500^{\circ} K$	tudenquadrat $T = 1000^{\circ} K$
	$\langle \Delta \ z^2 angle$	0,0011354	0,0012096	0,0014914
	$\langle \Delta \; x^2 angle$	0,0049742	0,0072759	0,0136067
	$\langle \Delta \; y^2 angle$	0,0049742	0,0072759	0,0136067
C—Cl	$\langle \Delta \ x \ \Delta \ y \rangle$	0	0	0
	$\langle \Delta \ y \ \Delta \ z \rangle$	0	0	0
	$\langle \Delta \; z \; \Delta \; x angle$	0	0	0
	$\langle \Delta \; z^2 angle$	0,0021049	0,0022504	0,0027708
	$\langle \Delta x^2 \rangle$	0,0078782	0,0115238	0.0215506
	$\langle \Delta y^2 \rangle$	0,0078782	0,0115238	0,0215506
$C\equiv N$	$\langle \Delta \ x \ \Delta \ y \rangle$	0	0	0
	$\langle \Delta \ y \ \Delta \ z \rangle$	0	0	0
	$\langle \Delta \ z \ \Delta \ x \rangle$	0	0	0
	$\langle \Delta \; z^2 angle$	0,0023209	0,0027376	0,0047874
	$\langle \Delta x^2 \rangle$	-0,0002412	-0,0003529	0,0006599
	$\langle \Delta y^2 \rangle$	-0,0002412	0,0003529	-0.0006599
ClN	$\langle \Delta x \Delta y \rangle$	0	0	0
	$\langle \Delta y \ \Delta z \rangle$	0	0	0
	$\langle \Delta \ z \ \Delta \ x angle$	0	0	0

Tabelle 4. Chlorcyan: Verallgemeinerte mittlere Amplitudenquadrate in \mathbb{A}^2

0,01453 Å bei 500° K und 0,02717 Å bei 1000° K. Obwohl diese durch die senkrechte Verschiebung verursachten Werte klein scheinen, sind sie doch vorhanden und müssen zu den beobachteten nichtgebundenen Abständen bei der entsprechenden Temperatur dazugerechnet werden. Diese Werte sollten nützlich sein, wenn man die durch Elektronenbeugung erhaltenen Meßergebnisse für die lineare Schrumpfung dieses Moleküls deuten will.

Thermodynamische Funktionen

Wir berechneten die molaren thermodynamischen Funktionen, und zwar die Enthalpie, die Freie Enthalpie, die Entropie und die Molwärmen für alle 4 isotopen Arten des Chlorcyans für den Temperaturbereich 200-2000° K. Dabei verwendeten wir die Grundfrequenzen in cm⁻¹ und die Gleichgewichtskernabstände in Å aus Tab. 1. Die Berechnungen gelten für das Modell eines starren Rotators und harmonischen Oszillators und den thermodynamischen Standardgaszustand mit der Fugazität

Monatshefte für Chemie, Bd. 101/2

eins (eine Atmosphäre). Wir verwendeten die von *Pitzer*³⁵ angegebenen Standardformeln und Funktionstabellen für die Beiträge vom harmonischen Oszillator. Die Hauptträgheitsmomente, die wir in unserer Rechnung verwendeten, sind:

Für das Molekül ³⁵Cl¹²C¹⁴N:

$$I_{xx} = I_{yy} = 84,6678 \text{ AME } \text{\AA}^2 (140,6442 \cdot 10^{-40} \text{ g cm}^2)$$

 $I_{zz} = 0.$ Für das Molekül ³⁷Cl¹²Cl¹⁴N:

 $I_{xx} = I_{yy} = 86,4572 \text{ AME Å}^2 (143,6166 \cdot 10^{-40} \text{ g cm}^2).$ Für das Molekül ³⁵Cl¹²Cl¹⁵N :

 $I_{xx} = I_{yy} = 87,9493 \text{ AME } \text{\AA}^2 (146,0952 \cdot 10^{-40} \text{ g cm}^2)$

$$I_{zz}=0.$$

Für das Molekül ³⁷Cl¹²C¹⁴N:

 $I_{xx} = I_{yy} = 89,8507 \text{ AME } \text{\AA}^2 (149,2537 \cdot 10^{-40} \text{ g cm}^2)$ $I_{zz} = 0.$

Tabelle 5. Enthalpie, Freie Enthalpie, Entropie und Molwärme von ³⁵Cl¹²C¹⁴N für den idealen Gaszustand bei einer Atmosphäre Druck

<i>T</i> (°K)	$(H_0 - E_0^\circ)/T$	$-(F_0-E_0^\circ)/T$	S°	C_{p}°
200	7,768	44,563	52,331	9,448
273, 16	8,365	47,074	55,439	10,475
298,16	8,547	47,809	56,356	10,737
300	8,568	47,869	56,437	10,762
400	9,219	50,422	59,641	11,540
500	9,738	52,534	62,272	12,070
600	10,162	54,344	64,506	12,484
700	10,516	55,935	66,451	12,819
800	10,824	57,369	68,193	13,102
900	11,106	58,690	69,796	13,350
1000	11,332	59,859	71,191	13,546
1100	11,547	60,963	72,510	13,719
1200	11,732	61,968	73,700	13,861
1300	11,896	62,882	74,778	13,984
1400	12,040	63,753	75,793	14,083
1500	12,196	64, 644	76,840	14,177
1600	12,314	65,400	77,714	14,249
1700	12,431	66,152	78,583	14,315
1800	12,544	66,901	79,445	14,370
1900	12,628	67,509	80,137	14,419
2000	12,725	68,209	80,934	14,462

Alle Angaben in cal grad⁻¹ Mol⁻¹

³⁵ K. S. Pitzer, ,,Quantum Chemistry", Prentice-Hall, Inc., New York (1957).

Alle Angaben in cal grad ⁻¹ Mol ⁻¹					
T (°K)	$(H_0 - E_0^\circ)/T$	$-(F_0-E_0^\circ)/T$	S°	C_{p}°	
200	7,770	44,701	52,471	9,456	
273, 16	8,370	47,213	55,583	10,488	
298,16	8,562	47,957	56,519	10,761	
300	8,575	48,009	56,584	10,777	
400	9,227	50,564	59,791	11,554	
500	9,745	52,677	62,422	12,079	
600	10,167	54,486	64,653	12,488	
700	10,527	56,084	66,611	12,827	
800	10,837	57,521	68,358	13,133	
900	11,106	58,828	69,934	13,350	
1000	11,341	60,012	71,353	13,551	
1100	11,513	61,094	72,607	13,644	
1200	11,739	62,120	73,859	13,864	
1300	11,903	63,035	74,938	13,987	
1400	12,048	63,908	75,956	14,085	
1500	12,196	64,781	76,977	14,177	
1600	12,321	65,558	77,879	14,251	
1700	12,439	66,313	78,752	14,317	
1800	12,544	67,039	79,583	14,371	
1900	12,628	67,646	80,274	14,417	
2000	12,734	68,375	81,109	14,464	

Tabelle 6. Enthalpie, Freie Enthalpie, Entropie und Molwärme von ³⁷Cl¹²C¹⁴N für den idealen Gaszustand bei einer Atmosphäre Druck

Tabelle 7. Enthalpie, Freie Enthalpie, Entropie und Molwärme von ³⁵Cl¹²C¹⁵N für den idealen Gaszustand bei einer Atmosphäre Druck

$T(^{\circ}\mathbf{K})$	$(H_0 - E_0^\circ)/T$	$(F_0E_0^{\circ})/T$	<u> </u>	<i>C</i> ₀ °	
200	7,781	44,693	52,474	9,475	
273, 16	8,380	47,207	55,587	10,501	
298, 16	8,573	47,952	56,525	10,773	
300	8,586	47,996	56,584	10,790	
400	9,242	50,566	59,808	11,569	
50 0	9,764	52,686	62,450	12,099	
600	10,188	54,504	64,692	12,507	
700	10,545	56,106	66,651	12,845	
800	10,843	57,509	68,352	13,129	
900	11,119	58,826	69,945	13,369	
1000	11,349	60,002	71,351	13,568	
1100	11,564	61,104	72,668	13,741	
1200	11,750	62,113	73,863	13,882	
1300	11,913	63,028	74,941	14,000	
1400	12,066	63,919	75,985	14,101	
1500	12.212	64 773	76 985	14 189	

<i>T</i> (°K)	$(H_0 - E_0^{\circ})/T$	$-(F_0 - E_0^{\circ})/T$	S°	C_{p}°
1600	12,329	65,551	77,880	14,260
1700	12,448	66,307	78,755	14,326
1800	12,553	67,034	79,587	14,380
1900	12,656	67,763	80,419	14,427
2000	12,744	68,371	81,115	14,472

448 J.R. Durig u.a.: Funktionen einiger isotoper Arten des Chlorcyans

Fortsetzung (Tabelle 7)

Tabelle 8. Enthalpie, Freie Enthalpie, Entropie und Molwärme von ³⁷Cl¹²C¹⁵N für den idealen Gaszustand bei einer Atmosphäre Druck

Alle Angaben in cal grad⁻¹ Mol⁻¹

		<u> </u>		
T (°K)	$(H_0 - E_0^\circ)/T$	$-(F_0 - E_0^{\circ})/T$	S°	$C_{\mathbf{p}}^{\circ}$
200	7,785	44,831	52,616	9,493
273, 16	8,386	47,346	55,732	10,519
298,16	8,580	48,091	56,671	10,790
300	8,592	48,143	56,735	10,806
400	9,250	50,708	59,958	11,583
500	9,772	52,829	62,601	12,108
600	10,385	55,047	$65,\!432$	12,583
700	10,556	56,254	66,810	12,853
800	10,870	57,702	68,572	13,141
900	11,125	58,972	70,097	13,373
1000	11,363	60,160	71,523	13,574
1100	11,571	61,254	72,825	13,743
1200	11,758	62,264	74,022	13,885
1300	11,920	63,180	75,100	14,003
1400	12,066	64,056	76,122	14,101
1500	12,212	64,929	77,141	14,189
1600	12,337	65,709	78,046	14,262
1700	12,456	66,467	78,923	14,328
1800	12,561	67,195	79,756	14,381
1900	12,664	67,926	80,590	14,429
2000	12,752	68,537	81,289	14,474

Als z-Achse bezeichneten wir die Verbindungslinie aller drei Atome. Wir rechneten mit den chemischen Atomgewichten unter Annahme der Symmetriezahl 1 und Singulett-Elektronengrundzustand. Nicht berücksichtigt wurden die Verzerrung durch die Zentrifugalkraft, die Wechselwirkungen zwischen Rotation und Schwingung und die Kernspins. Die berechneten Werte der vier thermodynamischen Größen in cal \cdot grad⁻¹Mol⁻¹ für die vier isotopen Arten des Chlorcyans sind in den Tab. 5, 6, 7 und 8 zusammengestellt. Da in der Literatur keine kalorimetrischen Daten bekannt sind, ist ein Vergleich mit unseren Werten nicht möglich. Auf jeden Fall sollten unsere Ergebnisse in Zukunft bei der Deutung von Meßergebnissen für die Entropien und Molwärmen im idealen Gaszustand dieser Moleküle wertvoll sein.